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Orthomodular Implication Algebras *

Ivan Chajda,? Radomir Hala? and Helmut Langer3*

In Boolean algebras the properties of the implication operation can be modeled by a
so-called implication algebra that itself can be considered as a join-semilattice with 1
whose principal filters are Boolean algebras. This situation is generalized from Boolean
algebras to orthomodular lattices.

The classical two-valued propositional logic has its algebraic counterpart in
a Boolean algebra. If one considers only the logical connective implication of
classical logic then the clone generated by this connective is not the clone of all
Boolean functions. The algebraic counterpart of the mentioned case is the so-
called implication algebra introduced and treated by Abbott (1967). Similarly,
an algebraic counterpart of the fragment of intuitionistic logic containing only
intuitionistic implication and the constant 1 (which can serve as a true value)
was introduced by Henkin and treated by Diego (1967) under the name Hilbert
algebra.

In some considerations concerning quantum mechanics, another type of logic
turned out to be suitable. It was investigated by numerous authors under various
names (cf. e.g., Beran, 1984; Burmeister angtk{/hiski, 1994; Dorningeet al.,,

2000; Kalmbach, 1983; Pulmannové, 1993). However, algebraic counterparts of
these logics are either orthomodular lattices (cf. e.g., Beran, 1984; Kalmbach,
1983) or the so-called orthomodular algebras (Burmeister agaizivhski, 1994)
or certain generalizations of Boolean rings (cf. e.g., Dorningteal., 2000).
These logics are in some sense correlated with the Hilbert space logic of quantum
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mechanics but there are still some differences concerning the interpretation. This
fact motivated us to consider only the reduct of this so-called orthomodular logic
that contains the connective implication and we found its algebraic representation.
We believe that this attempt can be helpful for providing a better interpretation of
the connective of implication in guantum mechanical logic.

In classical logic the implication> can be composed by means of disjunction
v and negation as follows:x — y := x’ v y. If instead of a Boolean algebra an
orthomodular lattic& is considered then there exist exactly six binary terms coin-
ciding with the usual implication operation in the case ihét a Boolean algebra.
It turns out that for our purposes the most useful term representing implication in
orthomodular lattices isx( A y) V' y.

Lemmal. InaBooleanalgebra(BU, N, ', 0, 1) theimplication operatior->
defined by

X—>y=xUy
for all x, y € B satisfies the following axioms:
X—x=1,
X—=>y) - x=X,
X=y) =y=@—=>x =X
and

X=>(yy—>2=y—> (X— 2.
Proof: Easy. O

These axioms seem to be the characterizing properties of the connective of
implication in Boolean algebras, i.e. in classical logic. This was the motivation for
the following definition:

Definition 1. (Abbott, 1967). Anmplication algebras an algebraA, -, 1) of
type (2, 0) satisfying the following axioms:

(11) xx=1,

(12) (xy)x = x,

(13) (xy)y = (yx)x, and
(14) x(y2) = y(x2).

Remark 1. Originally (Abbott, 1967) an implication algebra was defined as a
groupoid satisfying the axioms (12)—(14). That the tetxis constant follows from
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(12) and (13) (cf. Abbott, 1967):
xx = ((xy)x)x = (x(xy))(xy) = (xy)x)(xy)(xy) = (xy)(xy)

= ((xY)x(xy) = (NYNXY)Y)

= (((YNEMNENYNxY)Y) = (xV)Y((XY)Y)

= ((yx)x)((yx)x) = (((yx)x)(yxD((yx)x))((yx)x) = ((yx)((yx)x))((yx)x)

= (((yx)x)(yx))(yx) = (yx)(yx) = ((y)y)(yx))(yx) = (Y(yx))(yX)

= ((y)y)y = yy.

One can ask about the structure of implication algebras. A close inspec-
tion shows that these algebras can be considered as very special posets that are

set-theoretical unions of Boolean algebras. Theorem 1 describes the structure of
implication algebras as so-called Boolean join-semilattices.

Definition 2. A Boolean join-semilatticés an algebra of the formA, U, 1,

(P; p e A) where A, U, 1) is a join-semilattice with greatest element 1 and
for eachp € A, P is a unary operation onp] 1] such that for eaclp € A,
([p. 1], U, Ny, P, p, 1) is a Boolean algebra whefg, denotes the meet-operation
corresponding to the partial order induceduay

It was proved in Abbott (1967).

Theorem 1. If A= (A,-, 1)isanimplication algebra and one defines
xvy:=(xy)yforallx,yeA
and
xP:=xpforallpe Aandall xe [p, 1]
thenS(A) = (A, v, 1, (°; p € A)) is a Boolean join-semilattice. Conversely, if
S=(AU,1,(; pe A)is aBoolean join-semilattice and one defines
Xy :=(xXUy)Y
forall x, y € AthenA(S) := (A, -, 1)is an implication algebra. For every fixed

base set A the mappin@andA are mutually inverse bijections between the set of
all implication algebras over A and the set of all Boolean join-semilattices over A.

Moreover, in every implication algebra the partial order relation is compatible
with the binary operation in the following way:

Lemma?2. (Abbott,1967) If (A, -, 1)isanimplication algebrathen,xy, z €
A and x < y together imply both zx zy and xz> yz.

Definition 3. An orthomodular latticds an algebral(, U, N, ’, 0, 1) of type (2,
2,1,0,0)suchthat(, U, N, 0, 1) is a bounded lattice and the following conditions
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are satisfied:

(i) xux' =1,
(i) (xUyy =x'ny,
(iii) (x)Y =x, and
(iv) x < yimpliesy =x U (yNnx’).

Itis well known that an orthomodular lattice is a Boolean algebra if and only if
it is distributive and that in the variety of orthomodular lattices there exist exactly
six terms that coincide with the usual implication term in the case of Boolean
algebras. It turns out that the following term is appropriate for our purposes:

X Nny)uy.
The following lemma shows that similar to the results in Lemma 1, the implication
operation just defined has some natural properties:
Lemma 3. In an orthomodular lattice (I.U, N, ’, 0, 1) the implication opera-
tion — defined by
X—=>y=XXnNny)Uy
for all x, y € L satisfies the following axioms:
X = x=1,
X—=>(y—>x)=1,
X—=>y) = x=Xx,
X=>y)=>y=(y—>Xx—X
(xX=>¥Y)—>y)—>2)—>Kx—>2=1,
and
(X =Y =>VN—=>2)>2)—>2—>X) —>X)>2—>X)—>X
=(((x—=>y)—>Yy)—>2—z
Moreover,
(Xx—>y)—>y=xUy
forallx,y e L.

Proof: Let (L,U,N,’, 0,1) be an orthomodular lattice and defiwe> y :=
xX'ny)uyforallx,y e L. Thenforallx, y, z € L it holds:

X=y)—=y=(Xny)uy)ny)uy=(xuy)ny)uy=xuUy,
X=>Xx=XNx)Ux=1,
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X—=>(y—=>x)=Xn{ynx)ux))uy nx)ux
=xX'Nyux)Uu Ny)ux
=((xuy)NnxX)ux nNny)ux =1,

X—=y)=>x=((xXNYy)uy)Nx)ux=((xUy)ny nx)ux
=0UX =X,

X—=>Yy)=>y=xUy=yUx=(y— X)— X,

(x=>y)=>y)—>2—Kx—>2
=(xUuyynZyuzy Nn(X NZ)uz)uX NZ)uz
=(xUuyuzinZnxuzNnzZ)ux' Nz)uz
=(xUznZ)uxXNnZ)yuz=1

and
((((((x=>y)=>¥Y) > 2> 2= 2 > X) > X) > 2 > X) > X
=((xUyuzynZ)uzux) NnzZ)uzux
=(xuyuznzZnx)uzux
=(xuyuznx'NzZ)uxuz=xUyuUz
=((x=>y)—>y)—>2—>z O

Again one may ask whether the properties just considered are necessary for
describing the implication reduct of orthomodular logics. The affirmative answer
leads to the following definition:

Definition 4. Anorthomodular implication algebre an algebraA, -, 1) of type
(2, 0) satisfying the following axioms:

(01) xx=1,

(02) x(yx) =1,

(03) (xy)x = x,

(O4) (xy)y = (Yx)x,

(05) (ky)y)2)(x2) = 1,and

(06) (((((kY)Y)22)2)x)x)2)x)x = ((XY)Y)2)Z.

In an orthomodular implication algebr#\(-, 1) a binary relation< and a
binary operation/ are defined by

x <yifandonlyifxy=1
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and

XVy = (Xy)y,
respectively, for alk, y € A.

Remark 2. Using the just defined binary operatien(O4)—(06) can be written
more shortly as follows:

(O4) xvy=yvVvX,
(05) (xVvYy)2(x2=1,and
(06) (xkvy)vdzvX)zvx=(XVy)Vvz

The following lemma shows that orthomodular implication algebras are also
very special posets:

Lemma 4. For an orthomodular implication algebra (A, 1) and a b,c € A
the following hold:

(i) a<1,
(i) 1a=a,
(i) a<bifandonlyifavb=Db,
(iv) avi=1,
(v) a<a,
(vi) a < b < aimplies a= b,
(vii) a<b <cimpliesa<c,
(viii) a<avhb,
(ixX) a < bimplies bc< ac, and
(x) a,b<cimpliesavb<c.

Proof:

() al =a(aa) = 1 according to (O1) and (O2) and herece 1.
(i) 1a = (aa)a = a according to (O1) and (O3).
(i) If a < bthena v b = (ab)b = 1b = baccording to (ii). If, conversely,
aVvb=>bthenab=a(avb)=a(bva)=a((ba)a) =1 according
to (O4) and (02) and henee< b.
(iv) av1l=1va=(la)a=aa= 1accordingto (04), (ii), and (O1).
(v) aa= 1 according to (O1) and henee< a.
(vi) a<b<aimpliesa=1la=(bala=bva=avb=(abb=1b=
b according to (ii) and (04).
(vi) a<b<c implies 1=bc=(aVvb)c <ac<1 according to (iii),
(O5), and (i) whence by (viac= 1, i.e.a <c.
(viii) a(av b)=a(bva)=a((ba)a) =1 according to (O4) and (02) and
hencea <avb.
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(ix) a < b implies pc)(ac) = ((a Vv b)c)(ac) = 1 according to (iii) and
(O5) and hencéc < ac.

(x) If a,b < cthencb < ab according to (ix) whenca v b = (ab)b <
(chbb=cvb by (ix). This shows &vb)c=(avb)(bvc)=
(a v b)(c v b) =1according to (iii) and (O4) when@ev b <c. O

A close inspection of the local behavior of orthomodular implication algebras
leads to the following definition:

Definition5. Anorthomodular join-semilatticis an algebra of the form¥, v, 1,

(P; p € A) where A, v, 1) is a join-semilattice with greatest element 1 and for
eachp € A, Pis a unary operation orp| 1] such that for eaclp € A, ([p, 1], Vv,

Ap, P, p, 1) is an orthomodular lattice where, denotes the meet-operation cor-
responding to the partial order inducedy

Theorem 2. If A= (A, -, 1)is an orthomodular implication algebra and one
defines

XVvy:=(xy)y forall x,y € A
and
xP:=xpforallpe Aandallxe [p, 1]

thenS(A) := (A, v, 1, (°; p € A)) is an orthomodular join-semilattice.

Proof: Let (A, -, 1) be an orthomodular implication algebra. From (v), (vi),
(vii), and (i) of Lemma 4 it follows thatA, <) is a poset with greatest element 1.
(O4) together with (viii) and (x) of Lemma 4 imply that is the join-operation
corresponding te<. Hence @, v, 1) is a join-semilattice with greatest element 1.
Now fix p € Aand putxP := xpfor all x € A. From (ix) and (viii) of Lemma 4

it follows that (°, P) is a Galois connection betweeh (<) and (A, <). Since
xp > pforallx € Aaccordingto (O2) and sinoee Aandx > ptogether imply
X=XV p=Xp)p, itfollows AP = Ap = [p, 1]. Hence?|[ p, 1] is aninvolutory
antiautomorphism of , 1], <). This clearly impliesx v y)? = xP A, yP for all
X,y € [p, 1] if one definex A, y := (xP v yP)P forall x, y € [p, 1] and it also
follows thatA, is the meet-operation correspondingtoMoreover,

XVXP=xPvx=(xXpx)x =xx=1

for all x € A according to (O3) and (O1). Finally, for, y € [p, 1] with X < y it
holds

y=xvyvp=(XVvyvppvx)pVvx=(ypVvx)pVx
=P VvX)Pvx=(yApxP)vx=xV(yApxP)
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according to (O6), which proves thatp([1], v, Ap, P, p, 1) is an orthomodular
lattice. O

Theorem 3. If S=(A,U, 1, (°; p € A)) is an orthomodular join-semilattice
and one defines

Xy = (xUy)Y

forall x, y € AthenA(S) := (A, -, 1)is an orthomodular implication algebra.

Proof: Let (A, U, 1, (°; p € A)) be an orthomodular join-semilattice. Then for
all x,y, ze Aitholds:

xVvy:i=(Xxy)y=((xuUyJuy) =(xuyV) =xuy,

(0O1) xx=(xXUX)*=x*=1,

(02) x(yx) = (x U (y Ux)*)00" = ((y U x))00" =1,

(03) xy)x =((xUy) Ux)=((xUy)YUyux)*=1¢=x,

(O4) xvy=xUy=yUX=YyVX,

(05) (X Vv ¥)2)(x2) = (x U y U 2)? U (x U 2)2)*X2" = ((x U 2)»)*“2* = 1, and
(06) (xvy)v2zvX)zvXx =((XxUyUz)?UxUZz?UXx

=((xUyuzNn(xUz?’)uxuz=xUyuz
=(xvyvz O
Theorem 4. For fixed base set A the mappin§sand A are mutually inverse

bijections between the set of all orthomodular implication algebras over A and the
set of all orthomodular join-semilattices over A.

Proof: If A= (A, -, 1)isanorthomodularimplicationalgeb&A) = (A, v, 1,
(P; p € A) andA(S(A)) = (A, o, 1) then

Xoy=(xVy) =(xy)y)y=Xyvy=xy

for all x, y € A according to (02). If, conversel§ = (A, v, 1, (°; pe A)) is
an orthomodular join-semilatticeA(S) = (A, -, 1) and S(A(S)) = (A, U, 1,
(p; p € A)) then

xUy=(xyy=(xvy)’ vy =(xvy) =xvy
forall x, y € Aand
Xp=Xxp=(xV pP=xP

forallpe Aandallx € [p,1]. O
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Corollary 1 (Abbott, 1967). The orthomodular join-semilattice corresponding
to an implication algebra is a Boolean join-semilattice. The orthomodular im-
plication algebra corresponding to a Boolean join-semilattice is an implication
algebra.

Remark 3. Theorem 4 and Corollary 1 say that the mappiSgsdA are exten-
ded from the “Boolean case” to the “orthomodular case.”

Corollary 2.  Everyimplication algebra is an orthomodular implication algebra.
An orthomodular implication algebra is an implication algebra if and only if it
satisfies the conditio(i4).

In contrast to Lemma 2 saying that in implication algebras the partial order
relation is compatible with the binary operation in a certain sense, in orthomodular
implication algebras a similar result can be obtained only for special triples of
elements:

Lemmab. Let(A, -, 1)beanorthomodularimplicationalgebraandla, c € A.
Then(i) and(ii) hold:

(i) Ifa <corb =< cthengbc) = b(ac).
(i) If a,c < bthencax ch.

Proof:

(i) If a < cthenac= 1andhencé(ac) = bl = 1. Moreovera < ¢ < bc.
Therefore alsa(bc) = 1. The caséd < cis symmetric to the case< c.
(i) If a,c<bthenca<l=ch O

Lemma 6. If (L,U,N,’, 0, 1)is an orthomodular lattice and,&, ¢ € L with
a<c<bthen(c Ua)nb=(c Nb)Uaf(cf. Beran, 1984; Kalmbach, 1983)

Lemma?7. If£=(L,U,N,’, 0,1)isanorthomodular lattice and,& e L with
a < b and if one defines

x*:=(xX'Ua)Nb=(XNbyua

for all x € [a, b] then([a, b], U, N,*, a, b) is an orthomodular lattice, called the
interval-orthomodular latticea] b] induced byZ.

Theorem 5. If £L=(L,uU,n,’,0,1)is an orthomodular lattice and4 :=

(L, -, 1) is the corresponding orthomodular implication algebra then the ortho-
modular lattices([p, 1], V, Ap, P, p, 1) of S(A) are interval-orthomodular lat-
tices induced by.
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Proof: According to Lemma 3, and Theorem2,= v. For all p € L and all
X € [p, 1] it holds

xXP=xp=XNp)Up=xXUp=xKUpNl=KxN1Up. O
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