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Orthomodular Implication Algebras 1

Ivan Chajda,2 Radomı́r Halas̆,2 and Helmut Länger3,4

In Boolean algebras the properties of the implication operation can be modeled by a
so-called implication algebra that itself can be considered as a join-semilattice with 1
whose principal filters are Boolean algebras. This situation is generalized from Boolean
algebras to orthomodular lattices.

The classical two-valued propositional logic has its algebraic counterpart in
a Boolean algebra. If one considers only the logical connective implication of
classical logic then the clone generated by this connective is not the clone of all
Boolean functions. The algebraic counterpart of the mentioned case is the so-
called implication algebra introduced and treated by Abbott (1967). Similarly,
an algebraic counterpart of the fragment of intuitionistic logic containing only
intuitionistic implication and the constant 1 (which can serve as a true value)
was introduced by Henkin and treated by Diego (1967) under the name Hilbert
algebra.

In some considerations concerning quantum mechanics, another type of logic
turned out to be suitable. It was investigated by numerous authors under various
names (cf. e.g., Beran, 1984; Burmeister and Maiczyński, 1994; Dorningeret al.,
2000; Kalmbach, 1983; Pulmannová, 1993). However, algebraic counterparts of
these logics are either orthomodular lattices (cf. e.g., Beran, 1984; Kalmbach,
1983) or the so-called orthomodular algebras (Burmeister and Maiczyński, 1994)
or certain generalizations of Boolean rings (cf. e.g., Dorningeret al., 2000).
These logics are in some sense correlated with the Hilbert space logic of quantum
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mechanics but there are still some differences concerning the interpretation. This
fact motivated us to consider only the reduct of this so-called orthomodular logic
that contains the connective implication and we found its algebraic representation.
We believe that this attempt can be helpful for providing a better interpretation of
the connective of implication in quantum mechanical logic.

In classical logic the implication→ can be composed by means of disjunction
∨ and negation′ as follows:x→ y := x′ ∨ y. If instead of a Boolean algebra an
orthomodular latticeL is considered then there exist exactly six binary terms coin-
ciding with the usual implication operation in the case thatL is a Boolean algebra.
It turns out that for our purposes the most useful term representing implication in
orthomodular lattices is (x′ ∧ y′) ∨ y.

Lemma 1. In a Boolean algebra (B, ∪, ∩, ′ , 0, 1) the implication operation→
defined by

x→ y := x′ ∪ y

for all x, y∈ B satisfies the following axioms:

x→ x = 1,

(x→ y) → x = x,

(x→ y) → y = (y→ x) → x,

and

x→ (y→ z) = y→ (x→ z).

Proof: Easy. ¤

These axioms seem to be the characterizing properties of the connective of
implication in Boolean algebras, i.e. in classical logic. This was the motivation for
the following definition:

Definition 1. (Abbott, 1967). Animplication algebrais an algebra (A, · , 1) of
type (2, 0) satisfying the following axioms:

(I1) xx = 1,
(I2) (xy)x = x,
(I3) (xy)y = (yx)x, and
(I4) x(yz) = y(xz).

Remark 1. Originally (Abbott, 1967) an implication algebra was defined as a
groupoid satisfying the axioms (I2)–(I4). That the termxx is constant follows from
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(I2) and (I3) (cf. Abbott, 1967):

xx = ((xy)x)x = (x(xy))(xy) = (((xy)x)(xy))(xy) = (xy)(xy)

= (((xy)y)(xy))(xy) = ((xy)((xy)y))((xy)y)

= ((((xy)y)(xy))((xy)y))((xy)y) = ((xy)y)((xy)y)

= ((yx)x)((yx)x) = ((((yx)x)(yx))((yx)x))((yx)x) = ((yx)((yx)x))((yx)x)

= (((yx)x)(yx))(yx) = (yx)(yx) = (((yx)y)(yx))(yx) = (y(yx))(yx)

= ((yx)y)y = yy.

One can ask about the structure of implication algebras. A close inspec-
tion shows that these algebras can be considered as very special posets that are
set-theoretical unions of Boolean algebras. Theorem 1 describes the structure of
implication algebras as so-called Boolean join-semilattices.

Definition 2. A Boolean join-semilatticeis an algebra of the form (A, ∪, 1,
(p; p ∈ A)) where (A, ∪, 1) is a join-semilattice with greatest element 1 and
for each p ∈ A, p is a unary operation on [p, 1] such that for eachp ∈ A,
([ p, 1],∪, ∩p, p , p, 1) is a Boolean algebra where∩p denotes the meet-operation
corresponding to the partial order induced by∪.

It was proved in Abbott (1967).

Theorem 1. If A = (A, · , 1) is an implication algebra and one defines

x ∨ y := (xy)y for all x, y ∈ A

and

xp := xp for all p ∈ A and all x∈ [ p, 1]

then S(A) := (A, ∨, 1, (p; p ∈ A)) is a Boolean join-semilattice. Conversely, if
S = (A, ∪, 1, (p; p ∈ A)) is a Boolean join-semilattice and one defines

xy := (x ∪ y)y

for all x , y ∈ A thenA(S) := (A, · , 1) is an implication algebra. For every fixed
base set A the mappingsSandA are mutually inverse bijections between the set of
all implication algebras over A and the set of all Boolean join-semilattices over A.

Moreover, in every implication algebra the partial order relation is compatible
with the binary operation in the following way:

Lemma 2. (Abbott, 1967). If (A, · , 1) is an implication algebra then x, y, z ∈
A and x≤ y together imply both zx≤ zy and xz≥ yz.

Definition 3. An orthomodular latticeis an algebra (L , ∪, ∩, ′, 0, 1) of type (2,
2, 1, 0, 0) such that (L , ∪, ∩, 0, 1) is a bounded lattice and the following conditions
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are satisfied:

(i) x ∪ x′ = 1,
(ii) (x ∪ y)′ = x′ ∩ y′,

(iii) ( x′)′ = x, and
(iv) x ≤ y implies y = x ∪ (y ∩ x′).

It is well known that an orthomodular lattice is a Boolean algebra if and only if
it is distributive and that in the variety of orthomodular lattices there exist exactly
six terms that coincide with the usual implication term in the case of Boolean
algebras. It turns out that the following term is appropriate for our purposes:

(x′ ∩ y′) ∪ y.

The following lemma shows that similar to the results in Lemma 1, the implication
operation just defined has some natural properties:

Lemma 3. In an orthomodular lattice (L, ∪, ∩, ′ , 0, 1) the implication opera-
tion→ defined by

x→ y := (x′ ∩ y′) ∪ y

for all x , y ∈ L satisfies the following axioms:

x→ x = 1,

x→ (y→ x) = 1,

(x→ y)→ x = x,

(x→ y)→ y = (y→ x)→ x,

(((x→ y)→ y)→ z)→ (x→ z) = 1,

and

(((((((((x→ y)→ y)→ z)→ z)→ z)→ x)→ x)→ z)→ x)→ x

= (((x→ y)→ y)→ z)→ z.

Moreover,

(x→ y)→ y = x ∪ y

for all x , y ∈ L .

Proof: Let (L , ∪, ∩, ′, 0, 1) be an orthomodular lattice and definex→ y :=
(x′ ∩ y′) ∪ y for all x, y ∈ L. Then for allx, y, z ∈ L it holds:

(x→ y)→ y = (((x′ ∩ y′) ∪ y)′ ∩ y′) ∪ y = ((x ∪ y) ∩ y′) ∪ y = x ∪ y,

x→ x = (x′ ∩ x′) ∪ x = 1,
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x→ (y→ x) = (x′ ∩ ((y′ ∩ x′) ∪ x)′) ∪ (y′ ∩ x′) ∪ x

= (x′ ∩ (y ∪ x)) ∪ (x′ ∩ y′) ∪ x

= ((x ∪ y) ∩ x′) ∪ (x′ ∩ y′) ∪ x = 1,

(x→ y)→ x = (((x′ ∩ y′) ∪ y)′ ∩ x′) ∪ x = ((x ∪ y) ∩ y′ ∩ x′) ∪ x

= 0∪ x = x,

(x→ y)→ y = x ∪ y = y ∪ x = (y→ x)→ x,

(((x→ y)→ y)→ z)→ (x→ z)

= ((((x ∪ y)′ ∩ z′) ∪ z)′ ∩ ((x′ ∩ z′) ∪ z)′) ∪ (x′ ∩ z′) ∪ z

= ((x ∪ y ∪ z) ∩ z′ ∩ (x ∪ z) ∩ z′) ∪ (x′ ∩ z′) ∪ z

= ((x ∪ z) ∩ z′) ∪ (x′ ∩ z′) ∪ z= 1

and

(((((((((x→ y)→ y)→ z)→ z)→ z)→ x)→ x)→ z)→ x)→ x

= ((((x ∪ y ∪ z)′ ∩ z′) ∪ z∪ x)′ ∩ z′) ∪ z∪ x

= ((x ∪ y ∪ z) ∩ z′ ∩ x′) ∪ z∪ x

= ((x ∪ y ∪ z) ∩ x′ ∩ z′) ∪ x ∪ z= x ∪ y ∪ z

= (((x→ y)→ y)→ z)→ z. ¤

Again one may ask whether the properties just considered are necessary for
describing the implication reduct of orthomodular logics. The affirmative answer
leads to the following definition:

Definition 4. An orthomodular implication algebrais an algebra (A, · , 1) of type
(2, 0) satisfying the following axioms:

(O1) xx = 1,
(O2) x(yx) = 1,
(O3) (xy)x = x,
(O4) (xy)y = (yx)x,
(O5) (((xy)y)z)(xz) = 1, and
(O6) (((((((((xy)y)z)z)z)x)x)z)x)x = (((xy)y)z)z.

In an orthomodular implication algebra (A, · , 1) a binary relation≤ and a
binary operation∨ are defined by

x ≤ y if and only if xy= 1
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and

x ∨ y := (xy)y,

respectively, for allx, y ∈ A.

Remark 2. Using the just defined binary operation∨ (O4)–(O6) can be written
more shortly as follows:

(O4) x ∨ y = y ∨ x,
(O5) ((x ∨ y)z)(xz) = 1, and
(O6) (((x ∨ y) ∨ z)z∨ x)z∨ x = (x ∨ y) ∨ z.

The following lemma shows that orthomodular implication algebras are also
very special posets:

Lemma 4. For an orthomodular implication algebra (A, · , 1) and a, b, c ∈ A
the following hold:

(i) a ≤ 1,
(ii) 1a = a,
(iii) a ≤ b if and only if a∨ b = b,
(iv) a ∨ 1= 1,
(v) a ≤ a,

(vi) a ≤ b ≤ a implies a= b,
(vii) a ≤ b ≤ c implies a≤ c,
(viii) a ≤ a ∨ b,

(ix) a ≤ b implies bc≤ ac, and
(x) a, b ≤ c implies a∨ b ≤ c.

Proof:

(i) a1= a(aa) = 1 according to (O1) and (O2) and hencea ≤ 1.
(ii) 1a = (aa)a = a according to (O1) and (O3).
(iii) If a ≤ b thena ∨ b = (ab)b = 1b = b according to (ii). If, conversely,

a ∨ b = b thenab= a(a ∨ b) = a(b∨ a) = a((ba)a) = 1 according
to (O4) and (O2) and hencea ≤ b.

(iv) a ∨ 1= 1∨ a = (1a)a = aa= 1 according to (O4), (ii), and (O1).
(v) aa= 1 according to (O1) and hencea ≤ a.
(vi) a ≤ b≤ a impliesa= 1a= (ba)a= b∨ a = a ∨ b = (ab)b = 1b =

b according to (ii) and (O4).
(vii) a ≤ b ≤ c implies 1= bc= (a ∨ b)c ≤ ac≤ 1 according to (iii),

(O5), and (i) whence by (vi)ac= 1, i.e.a ≤ c.
(viii) a(a ∨ b) = a(b∨ a) = a((ba)a) = 1 according to (O4) and (O2) and

hencea ≤ a ∨ b.



P1: GDP

International Journal of Theoretical Physics [ijtp] PP233-343693 September 11, 2001 9:9 Style file version Nov. 19th, 1999

Orthomodular Implication Algebras 1881

(ix) a ≤ b implies (bc)(ac) = ((a ∨ b)c)(ac) = 1 according to (iii) and
(O5) and hencebc≤ ac.

(x) If a, b ≤ c thencb≤ ab according to (ix) whencea ∨ b = (ab)b ≤
(cb)b = c∨ b by (ix). This shows (a ∨ b)c = (a ∨ b)(b∨ c) =
(a ∨ b)(c∨ b) = 1 according to (iii) and (O4) whencea ∨ b ≤ c. ¤

A close inspection of the local behavior of orthomodular implication algebras
leads to the following definition:

Definition 5. An orthomodular join-semilatticeis an algebra of the form (A, ∨, 1,
(p; p ∈ A)) where (A, ∨, 1) is a join-semilattice with greatest element 1 and for
eachp ∈ A, p is a unary operation on [p, 1] such that for eachp ∈ A, ([ p, 1],∨,
∧p, p, p, 1) is an orthomodular lattice where∧p denotes the meet-operation cor-
responding to the partial order induced by∨.

Theorem 2. If A = (A, · , 1) is an orthomodular implication algebra and one
defines

x ∨ y := (xy)y for all x, y ∈ A

and

xp := xp for all p ∈ A and all x∈ [ p, 1]

thenS(A) := (A, ∨, 1, (p; p ∈ A)) is an orthomodular join-semilattice.

Proof: Let (A, · , 1) be an orthomodular implication algebra. From (v), (vi),
(vii), and (i) of Lemma 4 it follows that (A,≤) is a poset with greatest element 1.
(O4) together with (viii) and (x) of Lemma 4 imply that∨ is the join-operation
corresponding to≤. Hence (A, ∨, 1) is a join-semilattice with greatest element 1.
Now fix p ∈ A and putxp := xp for all x ∈ A. From (ix) and (viii) of Lemma 4
it follows that (p, p) is a Galois connection between (A,≤) and (A,≤). Since
xp≥ p for all x ∈ A according to (O2) and sincex ∈ A andx ≥ p together imply
x = x ∨ p = (xp)p, it follows Ap = Ap= [ p, 1].Hencep|[ p, 1] is an involutory
antiautomorphism of ([p, 1],≤). This clearly implies (x ∨ y)p = xp ∧p yp for all
x, y ∈ [ p, 1] if one definesx ∧p y := (xp ∨ yp)p for all x, y ∈ [ p, 1] and it also
follows that∧p is the meet-operation corresponding to≤. Moreover,

x ∨ xp = xp ∨ x = ((xp)x)x = xx = 1

for all x ∈ A according to (O3) and (O1). Finally, forx, y ∈ [ p, 1] with x ≤ y it
holds

y = x ∨ y ∨ p = ((x ∨ y ∨ p)p∨ x)p∨ x = (yp∨ x)p∨ x

= (yp ∨ x)p ∨ x = (y ∧p xp) ∨ x = x ∨ (y ∧p xp)
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according to (O6), which proves that ([p, 1],∨, ∧p, p, p, 1) is an orthomodular
lattice. ¤

Theorem 3. If S = (A, ∪, 1, (p; p ∈ A)) is an orthomodular join-semilattice
and one defines

xy := (x ∪ y)y

for all x , y ∈ A thenA(S) := (A, · , 1) is an orthomodular implication algebra.

Proof: Let (A, ∪, 1, (p; p ∈ A)) be an orthomodular join-semilattice. Then for
all x, y, z ∈ A it holds:

x ∨ y := (xy)y = ((x ∪ y)y ∪ y)y = ((x ∪ y)y)y = x ∪ y,

(O1) xx = (x ∪ x)x = xx = 1,
(O2) x(yx) = (x ∪ (y ∪ x)x)(y∪x)x = ((y ∪ x)x)(y∪x)x = 1,
(O3) (xy)x = ((x ∪ y)y ∪ x)x = ((x ∪ y)y ∪ y ∪ x)x = 1x = x,
(O4) x ∨ y = x ∪ y = y ∪ x = y ∨ x,
(O5) ((x ∨ y)z)(xz) = ((x ∪ y ∪ z)z ∪ (x ∪ z)z)(x∪z)z = ((x ∪ z)z)(x∪z)z = 1, and
(O6) (((x ∨ y) ∨ z)z∨ x)z∨ x = ((x ∪ y ∪ z)z ∪ x ∪ z)z ∪ x

= ((x ∪ y ∪ z) ∩ (x ∪ z)z) ∪ x ∪ z= x ∪ y ∪ z

= (x ∨ y) ∨ z. ¤

Theorem 4. For fixed base set A the mappingsS and A are mutually inverse
bijections between the set of all orthomodular implication algebras over A and the
set of all orthomodular join-semilattices over A.

Proof: If A = (A, · , 1) is an orthomodular implication algebra,S(A)= (A, ∨, 1,
(p; p ∈ A)) andA(S(A)) = (A, ◦, 1) then

x ◦ y = (x ∨ y)y = ((xy)y)y = xy∨ y = xy

for all x, y ∈ A according to (O2). If, conversely,S = (A, ∨, 1, (p; p ∈ A)) is
an orthomodular join-semilattice,A(S) = (A, · , 1) and S(A(S)) = (A, ∪, 1,
(p; p ∈ A)) then

x ∪ y = (xy)y = ((x ∨ y)y ∨ y)y = ((x ∨ y)y)y = x ∨ y

for all x, y ∈ A and

xp = xp= (x ∨ p)p = xp

for all p ∈ A and allx ∈ [ p, 1]. ¤
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Corollary 1 (Abbott, 1967). The orthomodular join-semilattice corresponding
to an implication algebra is a Boolean join-semilattice. The orthomodular im-
plication algebra corresponding to a Boolean join-semilattice is an implication
algebra.

Remark 3. Theorem 4 and Corollary 1 say that the mappingsSandA are exten-
ded from the “Boolean case” to the “orthomodular case.”

Corollary 2. Every implication algebra is an orthomodular implication algebra.
An orthomodular implication algebra is an implication algebra if and only if it
satisfies the condition(I4).

In contrast to Lemma 2 saying that in implication algebras the partial order
relation is compatible with the binary operation in a certain sense, in orthomodular
implication algebras a similar result can be obtained only for special triples of
elements:

Lemma 5. Let(A, · , 1)be an orthomodular implication algebra and a, b, c ∈ A.
Then(i) and(ii) hold:

(i) If a ≤ c or b≤ c then a(bc) = b(ac).
(ii) If a, c ≤ b then ca≤ cb.

Proof:

(i) If a ≤ c thenac= 1 and henceb(ac) = b1= 1.Moreover,a ≤ c ≤ bc.
Therefore alsoa(bc) = 1. The caseb ≤ c is symmetric to the casea ≤ c.

(ii) If a, c ≤ b thenca≤ 1= cb. ¤

Lemma 6. If (L , ∪, ∩, ′, 0, 1) is an orthomodular lattice and a, b, c ∈ L with
a ≤ c ≤ b then(c′ ∪ a) ∩ b = (c′ ∩ b) ∪ a (c f.Beran, 1984; Kalmbach, 1983).

Lemma 7. If L = (L , ∪, ∩, ′, 0, 1)is an orthomodular lattice and a, b ∈ L with
a ≤ b and if one defines

x∗ := (x′ ∪ a) ∩ b = (x′ ∩ b) ∪ a

for all x ∈ [a, b] then([a, b], ∪, ∩,∗ , a, b) is an orthomodular lattice, called the
interval-orthomodular lattice [a, b] induced byL.

Theorem 5. If L = (L , ∪, ∩, ′, 0, 1) is an orthomodular lattice andA :=
(L , · , 1) is the corresponding orthomodular implication algebra then the ortho-
modular lattices([ p, 1],∨, ∧p, p, p, 1) of S(A) are interval-orthomodular lat-
tices induced byL.
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Proof: According to Lemma 3, and Theorem 2,∪ = ∨. For all p ∈ L and all
x ∈ [ p, 1] it holds

xp = xp= (x′ ∩ p′) ∪ p = x′ ∪ p = (x′ ∪ p) ∩ 1= (x′ ∩ 1)∪ p. ¤
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